Use of Rice Production Cost Reducing Technology of Farmers, Doembang Sub-district, Doembangnanngbuat District, Suphanburi Province

Suwapach Wisetsantikul and Panamas Treewannakul*

1 Department of Agricultural Extension and Communication, Faculty of Agriculture, Kasetsart University, Bangkok 10900 Thailand
Submitted: 26 March 2019
Revised: 17 May 2019
Accepted: 24 May 2019
* Corresponding author: agrpmn@ku.ac.th

ABSTRACT: Objectives of this research were to study 1) personal demographic and economic data, 2) knowledge on rice production cost reduction technology, 3) opinion on rice production cost reduction technology, and 4) use of rice production cost reduction technology of 128 farmers in Doembang Sub-district, Doembangnanngbuat District, Suphanburi Province. Interview schedule was used to collect data and descriptive statistics analysis including frequencies, percentage, maximum and minimum score, and arithmetic mean were employed to analyze the data. The results revealed that 1) most of farmers at 58.6 percent were female with average age of 55.81 years, they had elementary level of education at 59.4 percent with average rice growing experience at 28.88 years, they had an average of 33.59 rai of paddy field, they had an average of 4 farm labors with 2 household labors, and 2 hired labors, their average family income was 477,089.84 Baht/year and average rice income at 453,549.22 Baht/year, their average income from rice grain was 6,921.88 Baht/rai and average cost of rice production at 3,672.46 Baht/rai, 2) they had the knowledge on rice production cost reduction technology in 4 aspects including rice seed, cultivation land preparation, chemical fertilizer usage, reducing the pesticide usage at high level with average mean score of 17.25 points from the total score 20 points, 3) more than 50 percent of farmers, they agreed on rice production cost reduction technology, and 4) farmers used rice production cost reduction technology in all aspects; that is rice seed 62.5 percent, cultivation land preparation 46.1 percent, chemical fertilizer usage 67.2 percent, and reducing the pesticide usage 84.4 percent. Therefore, agricultural extension officers should continue to develop and further promote the rice production cost reduction technology for farmers by creating understanding correctly for farmers and encourage them to be confident in the benefits of using this technology.

Keywords: Use of technology, rice production cost reducing technology, farmer, Suphanburi province
บทความอื่น

การผลิตและการค้าข้าวของประเทศไทยมี

บทความสำคัญต่อระบบการผลิตทางเกษตรของ

ประเทศไทยเยาวชน และ ในปี พ.ศ. 2560 ประเทศไทย

ผลผลิตข้าวรวมถึงเป็นอันดับ 6 ของโลก ซึ่งผลผลิตข้าว

ได้กล่าวถึง 34,652 ล้านตัน (Office of Agricultural

Economics, 2018) โดยเป็นผลผลิตข้าวสารของ

ไทยคิดเป็นร้อยละ 3.9 ของผลผลิตข้าวทั่วโลก อย่างไร

ก็ตาม ปริมาณการค้าผลิตภัณฑ์ในตลาดโลกมีสัดส่วน

เพียงปานกลางร้อยละ 10.0 ของผลผลิตข้าวทั้งหมด

ที่นั่นใน การผลิตข้าวของประเทศไทยนั้นต้องใช้ที่

ที่อยู่ประมาณร้อยละ 45.0 ของพื้นที่ที่ทำการเกษตรทั้งหมด

ของประเทศ และมีส่วนเกี่ยวข้องกับเกษตรกรที่มี

มากกว่า 17.5 ล้านคน หรือเกือบ 1 ใน 5 ของประชากร

ทั้งประเทศ (Chuesuan, 2018) เกษตรกรที่ภูติข้าว

ซึ่งมีได้รับการสนับสนุนจากภาครัฐอย่างต่อเนื่อง

เพื่อบรรลุการเกษตรสามารถเพิ่มปริมาณผลิตภัณฑ์ และ

ดีรับผลกำไรวันที่เป็นส่วนหนึ่งมากที่สุดผลผลิตข้าวได้พื้น

มากขึ้น เช่น การให้เข้าสู่ข้าวที่มีผลผลิตสูง การใช้สาร

เคมีป้องกันก้าวตัดข้าวพืช การใช้ปุ๋ยเจริญเติบโตและ

เพิ่มผลผลิต และการใช้เวกเตอร์ในที่พักอาศัย

เป็นต้น แต่ละภาคผลผลิตข้าวของเกษตรกร ต้อง

เห็นถึงความต้องการความเสียหายของผลผลิตจาก

สภาพพื้นที่ด้านต้องมีการเข้าร่วมมาตรการที่

ของป้องกันการผลิตติดเชื้อไวรัสในสุวรรณภัยด์

เนื่องไม่ว่าจะเป็นผลผลิตหรือกระบวนการส่ง

งานให้กับเกษตรกรใดๆ โดยในช่วงผลผลิตข้าว

ผลผลิตข้าวของเกษตรกรผู้ผลิตข้าวจะได้รับจากส่วนหนึ่ง

ของราคาขายกับต้นทุนการผลิตที่มีความไม่แน่นอน

และเกิดผลกระทบต่อเนื่องตามกลไกตลาดประการ

การผลิตข้าวของเกษตรกรในปัจจุบัน มีต้นทุน

การผลิตที่เกี่ยวข้อง คือ ค่าใช้จ่ายในการผลิตข้าว

ประกอบด้วย ค่าผลิตภัณฑ์ การผลิตข้าว และค่ารับผิดค่า
ปัญหาด้านการใช้นโยบายการผลิตข้าวที่มี
ถูกต้องและเหมาะสม มีปัญหาขาดแคลนส่วนใหญ่ขาด
ความรู้ในการใช้ปัจจัยการผลิต ได้แก่ เมล็ดพันธุ์ข้าว
พันธุ์ดี การปรับปรุงการปัจจัย การเปลี่ยนแปลง
การปลูก การใช้ปุ๋ย การดูแลการใช้สารเคมี
ป้องกันโรคสัตว์กิน การควบคุมการใช้น้ำ และการ
ปฏิบัติกิจกรรมการผลิต อีกทั้ง ทำให้เกิดปัญหาการ
ปลูกข้าวตัวเลือกต่ำ ทำให้เกษตรกรข้าวขาดรายได้ทั้งไม่
สามารถผลิตข้าวที่มีคุณภาพได้ ขณะเดียวกันก็ไม่
สามารถเพิ่มประสิทธิภาพในการผลิตเพื่อเพิ่มคุณภาพ
และความปลอดภัยของผลผลิตได้ ซึ่งส่งผลต่อรายได้จากการ
ขายผลผลิตข้าวโดยผ่านตลาดเกษตรกรโดยตรง อย่างไรก็
ตาม เกษตรกรผู้ปลูกข้าวยังมีข้อจำกัดในการเพิ่มผลผลิต
การปลูกข้าวที่มีคุณภาพ การเพิ่มผลผลิตการผลิตข้าว
ต่าง ๆ ในระบบการผลิตหรือการปลูกข้าวตามปฏิบัติ
เพื่อเพิ่มผลผลิตให้เหมาะสมและจะจัดให้มีการศึกษาต่าง
เป็นการบริหารงานที่จะให้เกิดประสิทธิภาพสูงสุด
โดยการศึกษาและวิจัยเพื่อให้เกิดความ
ขับเคลื่อน เพื่อสร้างความมั่นใจในการผลิตข้าว
ที่มีคุณภาพสูงสุด

จากปัญหาที่พบในระบบการผลิตข้าว
ของเกษตรกรข้าวต้น กระทรวงเกษตรและสหกรณ์
ประกาศจัดตั้งหน่วยงานสานักงานข้าวบานในที่ตั้ง
กระทรวงเกษตร และสหกรณ์ ข้าวบานในที่ตั้ง
สำนักงานเศรษฐกิจการเกษตร กระทรวงเกษตรและสหกรณ์
ซึ่งกำหนด
แนวนโยบายแก้ปัญหาการจัดหาข้าวที่มีคุณภาพในระยะยาว
ให้สามารถเพิ่มรายได้จากการขายผลผลิตข้าวให้สูงขึ้น
จนเกิดความมั่นคงในรายชีพและสามารถเพิ่มพ้นจะยังได้
อย่างน้อยยืด โดยจัดเตรียมการปรับปรุงประสิทธิภาพ
การผลิตและเพิ่มคุณภาพผลผลิตข้าวของชาวนา
เน้นการลดต้นทุนการผลิต เพิ่มปริมาณผลผลิตและ
คุณภาพข้าว ผ่านการปลูกข้าวอย่างรู้วิธีด้าน
การผลิต การปรับปรุงการจัดการการผลิตและการตลาด
สนับสนุนการวางแผน การผลิตและปัจจัยที่จำเป็น
สำหรับให้เข้าสู่ระบบบริหารจัดการข้าวของชาวนา
ซึ่งจะมีการจัดทำข้อตกลง
ของรัฐและเอกชน และให้การปรับปรุงเพื่อสอดคล้องกับให้เกิด
การขับเคลื่อนการปรับปรุงโครงสร้างการผลิตข้าว
และตลาดอย่างเป็นไปตามนโยบายการเกษตรและ
สหกรณ์ ที่ประกาศให้ ป. พ.ศ. 2560 เป็นเป้าหมายการ
ลดต้นทุนการผลิตสินค้าเกษตร

การขับเคลื่อนการปรับปรุงประสิทธิภาพการ
ผลิตเพิ่มคุณภาพผลผลิตข้าวคุณภาพสูงสุดของ
เกษตรกรผู้ปลูกข้าว ซึ่งเน้นการลดต้นทุนการผลิต เพิ่ม
ปริมาณผลผลิตและคุณภาพข้าวจึงเป็น
ด้านการmanın
การปลูกข้าวอย่างรู้วิธีด้าน
การผลิต การปรับปรุงการจัดการการผลิตและการตลาด
สนับสนุนการวางแผนการผลิตสินค้าเกษตร ในระบบการ
ผลิตสินค้าเกษตร ในการลดต้นทุนการผลิต (เมล็ดพันธุ์
ปุ๋ยเคมี สารเคมี ๆ) เพื่อเพิ่มผลผลิตข้าว เพื่อการบริหาร
จัดการ (ระบบแปลง ระบบ ความเสี่ยงมาส) และการ
ตลาด (มีการวางแผนการตลาด และพัฒนาแนวทางการ
ตลาด) ด้านการปรับแก้ปัญหาเกษตรกร 417 กลุ่ม จำนวน
เกษตรกร 66,100 ราย เทียบกับข้าว 940,000 ตัน
ใน 65 จังหวัดทั่วประเทศ ซึ่งเกษตรกรมีรายได้ไม่
ปฏิเสธในการเพิ่มข้าวของตนเองให้เกิดความสุข
ต่อเนื่องอย่างเกินร้อย ภายใน 2 ปี
ปัจจุบันต้นทุนการผลิตข้าวเพิ่มด้วย
เกษตรกรได้รับ利益ข้าวของตนเองได้ที่ต้นทุน

อุปกรณ์และวิธีการ

ประการ

ประชากรที่ศึกษา คือ เกษตรกรผู้ปลูกข้าวในโครงการส่งเสริมเพิ่มศักยภาพการผลิตข้าว ขนาดต่ำระดับมีบางจัด อายุได้เป็นบางจัด จังหวัดสุพรรณบุรี จำนวน 128 ราย

เครื่องมือที่ใช้ในการวิจัย

เครื่องมือที่ใช้ในการเก็บรวบรวมข้อมูลในการวิจัยครั้งนี้ คือ แบบสัมภาษณ์ที่ผู้วิจัยสร้างขึ้นตามวัตถุประสงค์ที่ตั้งไว้ ประกอบด้วย คำถามปิด (Close question) และคำถามเปิด (Open-ended question) เกี่ยวกับ ข้อมูลทางฐานส่วนบุคคล และข้อมูลทางเศรษฐกิจ ความรู้เกี่ยวกับเทคโนโลยีการผลิตข้าว ความสามารถในการจัดเก็บข้อมูลเทคโนโลยีการผลิตข้าว สามารถที่จะนำเทคโนโลยีและองค์ความรู้ได้รับจากการศึกษาไปใช้ปฏิบัติในชีวิตจริงของตนเองได้อย่างมีประสิทธิภาพ

ดังนี้การศึกษาการใช้เทคโนโลยีการผลิตข้าว จังหวัดสุพรรณบุรี ได้ใช้โครงการส่งเสริมเพิ่มศักยภาพการผลิตข้าว ซึ่งเป็นเรื่องที่จำเป็นที่ต้องศึกษาเพื่อให้ทราบถึงข้อมูลทางบุคคลที่จะอยู่ด้วยกัน และส่งเสริมการศึกษา ความรู้และความคิดเห็นเกี่ยวกับเทคโนโลยีการผลิตข้าว โครงการส่งเสริมเพิ่มศักยภาพการผลิตข้าว ช่วยให้เกษตรกรได้รับรู้ได้รับการศึกษาเทคโนโลยีการผลิตข้าว ทำให้เกษตรกรสามารถตัดสินใจในการ เก็บรวบรวมข้อมูลแบบข้อมูลที่มาจากการวิจัยครั้งนี้ ได้แก่ ค่าความถี่ (Frequency) ค่าร้อยละ (Percentage) ค่าเฉลี่ย (Mean) ค่าสูงสุด (Maximum) และค่าต่ำสุด (Minimum) ใช้ในการวิเคราะห์ข้อมูล
ผลกระทบต่อแวดล้อมและวิจารณ์

ข้อมูลพื้นฐานสำคัญของบุคคลและข้อมูลทางเศรษฐกิจ

<table>
<thead>
<tr>
<th>Knowledge aspect</th>
<th>Average mean score of point level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice seed (5 point)</td>
<td>0–1.66</td>
</tr>
<tr>
<td>Cultivation land preparative (5 point)</td>
<td>0–1.66</td>
</tr>
<tr>
<td>Chemical fertilizer usage (6 point)</td>
<td>0–2.00</td>
</tr>
<tr>
<td>Reducing pesticide usage (4 point)</td>
<td>0–1.33</td>
</tr>
<tr>
<td>Knowledge in all aspect (20 point)</td>
<td>0–6.00</td>
</tr>
</tbody>
</table>
การยอมรับเทคโนโลยีการผลิตข้าวของเกษตรกรในพื้นที่ถ้ำช้างผัญญาภูริ อำเภอสองพี่น้อง จังหวัดเชียงใหม่ ที่พบว่า เกษตรกรมีประสบการณ์ในการปลูกข้าวเฉลี่ย 27.83 ปี (Kaewkhet, 2010)

พบว่า เกษตรกรส่วนใหญ่ร้อยละ 87.8 มีพื้นที่ข้าวเฉลี่ย 25.13 ไร่ และมีแรงงานที่ใช้ปลูกข้าวเฉลี่ย 3.98 คน โดยมีจำนวนแรงงานในครอบครัวเฉลี่ย 1.16 คน และเกษตรกรมีแรงงานจ้างเฉลี่ย 1.82 คน แต่ไม่แสดงผลกับ Remtrakoon (2012) พบว่า เกษตรกรมีขนาดพื้นที่ปลูกข้าวเฉลี่ย 16.56 ไร่ และมีแรงงานที่ใช้ปลูกข้าวเฉลี่ย 6.62 คน จำนวนนี้มีแรงงานในครัวเรือนเฉลี่ย 1.98 คน มีแรงงานจ้างเฉลี่ย 5.22 คน แสดงให้เห็นว่าของเหล่านี้เกษตรกรแต่ละรายมีพื้นที่ทำการที่เป็นของตนเองเกินกว่า 10 ไร่ ซึ่งสร้างรายได้จากการทำการทําพื้นที่ของตนเองไม่เพียงพอ จึงมีความจำเป็นต้องแช่จ้างพื้นที่ทำการเพิ่มเติม อาจเป็นเพราะว่าเกษตรกรมีการจัดการต้นทุนกับแรงงานในการปลูกข้าวโดยการรวมกลุ่มกันใช้เครื่องจักรกลและเครื่องมือที่เพื่อจัดการพื้นที่ปลูกข้าวได้อย่างมีประสิทธิภาพ

เกษตรกรมีรายได้ในครัวเรือนเฉลี่ย 477,089.84 บาท/ปี มีรายได้จากเกษตรกรเฉลี่ย 453,549.22 บาท/ปี รายได้จากเกษตรกรเฉลี่ย 8,914.06 บาท/ปี รายได้เกษตรกรเฉลี่ย 6,845.31 บาท/ปี เทียบเท่ากับ Remtrakoon (2012) พบว่า เกษตรกรรายได้เฉลี่ย 372,689.35 บาท/ปี และผลิตผลดังกับ Srivichai (2017) พบว่า เกษตรกรมีรายได้เฉลี่ย 253,464.20 บาท/ปี และมีรายได้เกษตรกรเฉลี่ย 244,909.14 บาท/ปี แสดงให้เห็นว่า รายได้หลักในครัวเรือนเป็นรายได้จากทำการผลิตข้าว เชิงปัสสาวะต่างๆ ของเกษตรกรทั้งนี้

เกษตรกรมีรายได้จากเกษตรกรเฉลี่ย 3,472,46 บาท/ปี ต้านที่ในการผลิตข้าวปี 2560/2561 เพื่อ 3,252.73 บาท/ปี ต้านที่ในการผลิตข้าวปี 2561 แต่ละปี 3,161.72 บาท/ปี มีรายได้จากเกษตรกรเฉลี่ย 6,921.88 บาท/ปี รายได้เกษตรกรเฉลี่ย 2560/61 เพื่อ 6,929.69 บาท/ปี รายได้เกษตรกรเฉลี่ย 2561 เฉลี่ย 6,854.69 บาท/ปี เทียบเท่ากับ Srivichai (2017) ที่พบว่า เกษตรกรรายได้ 54.3 มีต้านที่ในเกษตรกรเฉลี่ย 3,500-4,000 บาท/ปี รองลงมา รายได้ 23.2 มีต้านที่ในเกษตรกรเฉลี่ย 4,000 บาท/ปี และเกษตรกรรายได้ 22.5 มีต้านที่ในเกษตรกรเฉลี่ย 3,500 บาท/ปี โดยมีต้านที่ในเกษตรกรเฉลี่ย 3,711.85 บาท/ปี รายได้ 23.40 บาท/ปี และสุทธิ 5,000 บาท/ปี เทียบเท่ากับ Jarunus (2014) ที่ใช้รายได้ ร้อยละที่มีวิจัยวัดต่อผลตอบแทนของเกษตรกรที่เข้าร่วมโครงการรับจ้างทำการผลิตข้าว เกษตรกรรายได้เฉลี่ย 2554/2555 เทียบเท่า 6,852.50 บาท/ปี อาจเป็นเพราะต้องการผลิตการผลิตข้าวเพื่อเกษตรกรรายได้มากกว่าการปลูกข้าวโดยการรวมกลุ่มกันใช้เครื่องจักรกลและเครื่องมือที่เพื่อจัดการพื้นที่ปลูกข้าวได้อย่างมีประสิทธิภาพ

ผลการวิจัยทั้งหมดนี้ยืนยันได้ว่าเกษตรกรมีการผลิตข้าวเฉลี่ย 2560/61 อย่างยิ่งที่สุด เมื่อเทียบกับรายได้เกษตรกรรายได้เมื่อเทียบกับเกษตรกรรายได้ตามที่เกษตรกรได้รับจากภาคเกษตรกรรายได้โดยการผลิตข้าว เทียบเท่ากับ Frasinsky (2015) ที่พบว่าเกษตรกรรายได้ 54.3 มีต้านที่ในเกษตรกรเฉลี่ย 3,500-4,000 บาท/ปี โดยมีต้านที่ในเกษตรกรเฉลี่ย 3,711.85 บาท/ปี รายได้ 23.40 บาท/ปี และสุทธิ 5,000 บาท/ปี เทียบเท่ากับ Jarunus (2014) ที่ใช้รายได้ ร้อยละที่มีวิจัยวัดต่อผลตอบแทนของเกษตรกรที่เข้าร่วมโครงการรับจ้างทำการผลิตข้าว เกษตรกรรายได้เฉลี่ย 2554/2555 เทียบเท่า 6,852.50 บาท/ปี อาจเป็นเพราะต้องการผลิตการผลิตข้าวเพื่อเกษตรกรรายได้มากกว่าการปลูกข้าวโดยการรวมกลุ่มกันใช้เครื่องจักรกลและเครื่องมือที่เพื่อจัดการพื้นที่ปลูกข้าวได้อย่างมีประสิทธิภาพ
<table>
<thead>
<tr>
<th>Demographic characteristic and economic data</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>80</td>
<td>24</td>
<td>55.81</td>
</tr>
<tr>
<td>Rice growing experience (year)</td>
<td>50</td>
<td>2</td>
<td>28.88</td>
</tr>
<tr>
<td>Rice cultivation (land (rai))</td>
<td>110</td>
<td>5</td>
<td>33.59</td>
</tr>
<tr>
<td>Own land (rai)</td>
<td>43</td>
<td>1</td>
<td>9.30</td>
</tr>
<tr>
<td>Lease land (rai)</td>
<td>110</td>
<td>3</td>
<td>24.13</td>
</tr>
<tr>
<td>Labor for rice production (person)</td>
<td>12</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Family labors (person)</td>
<td>7</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hired labors (person)</td>
<td>10</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Family income (Baht/year)</td>
<td>1,905,000</td>
<td>22,000</td>
<td>477,089.84</td>
</tr>
<tr>
<td>Rice growing income (Baht/year)</td>
<td>1,804,800</td>
<td>18,000</td>
<td>453,549.22</td>
</tr>
<tr>
<td>Agricultural sector income (Baht/year)</td>
<td>200,000</td>
<td>1,000</td>
<td>8,914.06</td>
</tr>
<tr>
<td>Non-agricultural sector income (Baht/year)</td>
<td>100,000</td>
<td>2,400</td>
<td>6,845.31</td>
</tr>
<tr>
<td>Income from rice grain (Baht/rai)</td>
<td>10,000</td>
<td>3,500</td>
<td>6,921.88</td>
</tr>
<tr>
<td>Dry season rice grain income, year 2017/2018 (Baht/rai)</td>
<td>10,000</td>
<td>3,500</td>
<td>6,929.69</td>
</tr>
<tr>
<td>Wet-season rice grain income, year 2018 (Baht/rai)</td>
<td>10,000</td>
<td>3,450</td>
<td>6,854.69</td>
</tr>
<tr>
<td>Rice production cost (Baht/rai)</td>
<td>8,500</td>
<td>1,500</td>
<td>3,472.46</td>
</tr>
<tr>
<td>Dry-season rice production cost, year 2017/2018 (Baht/rai)</td>
<td>6,000</td>
<td>1,500</td>
<td>3,252.73</td>
</tr>
<tr>
<td>Wet-season rice production cost, year 2018 (Baht/rai)</td>
<td>5,000</td>
<td>1,500</td>
<td>3,161.72</td>
</tr>
</tbody>
</table>

การเปรียบเทียบข่าวสารและความรู้ของเกษตรกร
การเปรียบเทียบข่าวสารเกี่ยวกับเกษตรกร
เกษตรกรเปรียบเทียบข่าวสารเกี่ยวกับเกษตรกร
จากแหล่งข่าวสาร (1) สื่อบุคคล ได้แก่ เจ้าหน้าที่ส่งเสริมภาคภูมิ ร้อยละ 97.7 เพื่อบันทึกข้อมูล 49.2 เจ้าหน้าที่ส่งเสริมภาคเอกชน ร้อยละ 39.1 ทั้งนี้หรือบุคคลในครอบครัว ร้อยละ 22.7 (2) สื่อสารสนเทศ ได้แก่ โทรทัศน์ ร้อยละ 61.7 วารสารเกี่ยวกับเกษตรกร ร้อยละ 44.5 วิทยุ ร้อยละ 20.3 หนังสือพิมพ์ ร้อยละ 7.0 (3) สื่อจัดสรร ได้แก่ การศึกษาอบรม ร้อยละ 75.0 การศึกษาดูงาน ร้อยละ 46.1 (4) สื่อออนไลน์ ได้แก่ เว็บไซต์ ร้อยละ 37.5 ข่าวโซเชียล ร้อยละ 21.9 เว็บไซต์ ร้อยละ 14.8 พลัสดี ร้อยละ 14.1 สอดคล้องกับ Kongka (2014) พบว่า เกษตรกรส่วนใหญ่ ร้อยละ 93.4 ได้รับข่าวสาร
ความรู้จากเจ้าหน้าที่ส่งเสริมภาคภูมิ ร้อยละ 89.0 ได้รับข่าวสารความรู้จากกิจการเข้ารับการอบรม/ศึกษาดูงาน ร้อยละ 66.9 ได้รับข่าวสารความรู้จากเจ้าหน้าที่จากหน่วยงานภาคภูมิอื่น ๆ ร้อยละ 66.2 ได้รับข่าวสารความรู้จากเพื่อนบ้าน และเกษตรกร ร้อยละ 44.9 ได้รับข่าวสารความรู้จากผู้ที่เข้าร่วมโครงการได้รับข่าวสารแหล่งข่าวสารที่มีการสื่อสารของทาง สามารถพูดคุยชัดเจน ข้อมูลสังเกตได้ เช่น เจ้าหน้าที่และการศึกษาอบรม สำหรับแหล่งข่าวสารจากโทรศัพท์คือไม่สามารถสื่อสารของทางได้ และสื่อโทรศัพท์มีที่มาจากหนังสือพิมพ์ วิทยุและสื่อโฆษณาและเสียงที่ทำให้เกษตรกรสามารถเข้าถึงข่าวได้ง่าย และเนื่องจากเกษตรกรส่วนใหญ่เป็นผู้สูงอายุจึงเข้าถึงสื่อออนไลน์ต่าง ๆ ได้ค่อนข้างเนื้อ

70 Agricultural Sci. J. 2019 Vol. 50 (1)
Table 2 Frequency and percentage of farmers with point of knowledge level on rice production cost reduction technology (N=128)

<table>
<thead>
<tr>
<th>Point of knowledge level on rice production cost reduction technology</th>
<th>Frequency</th>
<th>percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rice seed (average mean scores 3.85 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low level (0.00–1.66 points)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Moderate level (1.67–3.33 points)</td>
<td>35</td>
<td>27.3</td>
</tr>
<tr>
<td>High level (3.34–5.00 points)</td>
<td>93</td>
<td>72.7</td>
</tr>
<tr>
<td>2. Cultivation land preparation (average mean scores 4.41 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low level (0.00–1.66 points)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Moderate level (1.67–3.33 points)</td>
<td>22</td>
<td>17.2</td>
</tr>
<tr>
<td>High level (3.34–5.00 points)</td>
<td>106</td>
<td>82.8</td>
</tr>
<tr>
<td>3. Chemical fertilizer usage (average mean scores 5.22 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low level (0.00–2.00 points)</td>
<td>2</td>
<td>1.6</td>
</tr>
<tr>
<td>Moderate level (2.01–4.00 points)</td>
<td>23</td>
<td>17.9</td>
</tr>
<tr>
<td>High level (4.01–6.00 points)</td>
<td>103</td>
<td>80.5</td>
</tr>
<tr>
<td>4. Reducing pesticide usage (average mean scores 3.77 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low level (0.00–1.33 points)</td>
<td>2</td>
<td>1.6</td>
</tr>
<tr>
<td>Moderate level (1.34–2.67 points)</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>High level (2.68–4.00 points)</td>
<td>125</td>
<td>97.6</td>
</tr>
<tr>
<td>5. Knowledge in all aspect (average mean scores 17.25 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low level (0–6 points)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Moderate level (7–13 points)</td>
<td>6</td>
<td>4.7</td>
</tr>
<tr>
<td>High level (14–20 points)</td>
<td>122</td>
<td>95.3</td>
</tr>
</tbody>
</table>

ความรู้ที่เกี่ยวกับเทคโนโลยีการลดต้นทุนการผลิตข้าว

เกษตรกรมีความรู้เกี่ยวกับเทคโนโลยีการลดต้นทุนการผลิตข้าว 4 ด้าน โดยเรียงคะแนนจากมากที่สุดไปนั้นอยู่ที่สี่ด้าน (1) เกษตรกร ร้อยละ 80.5 มีความรู้รูปการใช้ปัจจัยด้วยความค่อนข้างในระดับมาก โดยมีคะแนนเฉลี่ย 4.41 คะแนน (3) เกษตรกร ร้อยละ 72.7 มีความรู้ด้านผลิตพันธุ์ข้าวในระดับมาก โดยมีคะแนนเฉลี่ย 3.85 คะแนน (4) เกษตรกร ร้อยละ 97.6 มีความรู้รูปการลดการใช้สารเคมีกำจัดวัชพืช โรค แมลง ในระดับมาก โดยมีคะแนนเฉลี่ย 3.77 ตามลำดับ และนี้เป็นเครื่องแสดงความรู้เกี่ยวกับการใช้เทคโนโลยีการลดต้นทุนการผลิตข้าวทั่วไปได้ พบว่าเกษตรกร ร้อยละ 95.3 มีความรู้ในระดับมาก โดยมีคะแนนเฉลี่ย
17.25 คะแนน ดั่งแสดงใน Table 2 ซึ่งแสดงล็อกกับ Remtrakoon (2012) พบว่า เกษตรกร ร้อยละ 59.1 มีความรู้เกี่ยวกับเทคโนโลยีการลดทุนการผลิตข้าวในระดับมาก รองลงมาได้ร้อยละ 40.9 มีความรู้เกี่ยวกับ เทคนิคการลดทุนการผลิตข้าวในระดับมากที่สุด โดยมีความรู้เกี่ยวกับเทคโนโลยีการลดทุนการผลิตข้าว ข้าวเหลือง 16.42 คะแนน ซึ่งจัดอยู่ในระดับมาก แสดงว่าโดยเฉลี่ยแล้วเกษตรกรมีความรู้ที่เพียงพอ เทคนิคการลดทุนการผลิตข้าวในระดับมาก นอกจากนี้เกษตรกรร้อยละ 40.9 ที่มีความรู้เกี่ยวกับ เทคนิคการลดทุนการผลิตข้าวในระดับมาก แต่ก็ไม่สอดคล้องกับ Kaewket (2010) ซึ่งพบว่า เกษตรกร ร้อยละ 60.23 มีความรู้อยู่ในระดับปานกลาง รองลงมาได้ร้อยละ 20.47 มีความรู้อยู่ในระดับต่ำ และมีเกษตรกรเพียงร้อยละ 19.30 มีความรู้อยู่ในระดับสูง

ความคิดเห็นเกี่ยวกับเทคโนโลยีการลดทุนการผลิตข้าวของเกษตรกร

เกษตรกรมีความคิดเห็นเกี่ยวกับเทคโนโลยีการลดทุนการผลิตข้าว 4 ด้าน ได้แก่ (1) ด้านมีสิทธิ์พื้นที่ทำนาเกษตรกรส่วนใหญ่เห็นด้วย เทคนิคปลูกข้าว ความเสี่ยงน้อยสีผลิตภัณฑ์ข้าวคุณภาพดีตระกูลพันธุ์ ร้อยละ 97.7 เรื่องมีสิทธิ์พื้นที่ ที่ปลูกข้าวเป็นพันธุ์บริสุทธิ์มีความต้องการไม่น้อยกว่า 80% ร้อยละ 93.8 เรื่องการทำนาว่านาควรให้ผลิตภัณฑ์พื้นที่อัตราส่วน 15-20 ยก ร้อยละ 69.5 เรื่องการเก็บรักษาสีผลิตภัณฑ์พื้นที่ ที่ปลูกข้าวจะต้องมีสีขาวมากกว่าร้อยละ 14 ร้อยละ 61.7 (2) ด้านการคุ้มครอง เกษตรกรส่วนใหญ่เห็นด้วย เทคนิคการคุ้มครองข้าวให้ผลิตภัณฑ์ชีวภาพดีที่ปลูกข้าว ร้อยละ 87.5 เรื่องการทำปลูกพื้นที่ เนื่องจากเทคโนโลยีที่เกี่ยวข้องกับการปลูกข้าว ร้อยละ 84.4 เรื่องการปลูกข้าวอย่างมีระบบความปลอดภัย ร้อยละ 82.8 เรื่องการปลูกข้าวอย่างมีระบบความปลอดภัย ร้อยละ 82.8 และ เกษตรกรส่วนใหญ่เห็นด้วยเรื่องการควบคุมพื้นที่โดยการเก็บเกี่ยวข้าวเพื่อลดด่างในการเตรียมพื้นที่โดยการเตรียมพื้นที่ด้วยการใช้เทคโนโลยีการลดทุนการผลิตข้าว ร้อยละ 73.4 (3) การใช้ปุ๋ยเคมีตามคำแนะนำ เกษตรกรส่วนใหญ่เห็นด้วยเรื่องการให้ปุ๋ยเคมีในนาคว้าข้าว ร้อยละ 98.1 ครั้ง ร้อยละ 90.6 เรื่องการให้ปุ๋ยตามคำแนะนำมาตราส่วนกว้างสูง ร้อยละ 83.3 เรื่องการรักษาพื้นที่ให้ลดการติดเชื้อโรคติดกันให้ปุ๋ยเคมีในนาข้าว ร้อยละ 87.5 เรื่องใช้ปุ๋ยเคมีในระยะข้าวแต่ละ ยกในอัตรา 5-10 ยก ร้อยละ 83.6 และเกษตรกรส่วนใหญ่เห็นด้วยเรื่องการใช้ปุ๋ยเคมีเป็นผลงานการที่ทำให้ได้เรียกความมูลค่าสูงการปลูกข้าว ร้อยละ 70.3 เรื่องการให้ปุ๋ยเรียกมูลค่าที่ทำให้ผลผลิตข้าวสูงและมีความรู้ความสามารถใช้เทคโนโลยีในนาข้าว ร้อยละ 65.6 (4) การใช้เครื่อง เครื่องมือจัดการพืช ผลผลิตเกษตรกรส่วนใหญ่เห็นด้วยเรื่องซื้อเครื่องจักรเต็มแบบ สามารถใช้เทคโนโลยีแค่เพียงข้าวได้ร้อยละ 91.4 เรื่องการจัดการพืช ของโรคภัยไม่ได้ร้อยละ 89.6 เรื่องการใช้สารเคมี ร้อยละ 76.1 เรื่องการใช้สารยาเบอร์เรียเรื่องการใช้โค้ดเตอร์มาใช้สารเคมี และสารกันเสื้อผ้า (2) ที่เทคโนโลยีการให้สารเคมีที่ได้ร้อยละ 88.3 และเกษตรกรส่วนใหญ่เห็นด้วยเรื่องการจัดการพืชที่ใช้สารเคมีที่ใช้สารเคมีร้อยละ 80.2 แต่เกษตรกรส่วนใหญ่เห็นด้วยเรื่องการจัดการพืชที่ใช้สารเคมีร้อยละ 72.7 สอดคล้องกับ Remtrakoon (2012) ซึ่งพบว่า เทคนิคการจัดการพืชได้ต้องการใช้เทคโนโลยีลดทุนการผลิตข้าวในการเพาะปลูกข้าวในระดับที่มีสูงสุดจากผลผลิตข้าว ร้อยละ 72.7
การปรับปรุงรายได้ทางการผลิตจำvariant 4 ด้าน ดังนี้

1) เปลี่ยนพื้นที่การเกษตรให้มีผลผลิตพืชพืช
คุณภาพดีเพื่อเพิ่มพื้นที่ ร้อยละ 100 การใช้สื่อเล็กพื้นที่
ข้าวที่เป็นพื้นที่อยู่ในร้อยละ 80
ร้อยละ 96.9 การทำให้สามารถใช้อัตราสิ่งต่างๆ ใน
อายุ 15–20 ปี ใช้เพียงระยะเวลา 47.7 อาจเป็นเพราะ
เกษตรกรต้องการการผลิตในปริมาณมาก ทำให้มีการใช้
อัตราสิ่งต่างๆตามกำหนด และอาจมีการหาเบี้ย
สั่งที่ต้องจ่าย เข้า นอก หนึ่ง และหยกอย่าง ร้อยละ 2
ทำให้เกษตรกรรายบุคคลที่มีการขาดแคลนและเกษตรกร
เกินร้อยละเล็กพื้นที่ข้าวที่มีความขึ้นมากกว่า
ร้อยละ 14% อาจเพียงร้อยละ 30.5 อาจเป็นเพราะเกษตรกรไม่มี
เครื่องจักรจัดจ้านในข้าว และไม่เห็นถึงความสำคัญ

2) การเตรียมดิน การเตรียมดินพื้นที่หลัง
การเก็บปุ๋ยหลัง เพื่อผลิตรายีจำแนกการเตรียมดิน
ร้อยละ 29.7 อาจเป็นเพราะเกษตรกรบางรายการเตรียม
พื้นที่ข้าวที่ต้องการที่ดินดินจึงจะทำดังนี้ เพื่อ
คุณภาพดีเร็วขึ้น จนทำให้เกษตรกรต้องใช้ปุ๋ยเพิ่มเติม
ทำให้ดินทุ่นเพิ่มขึ้น ทำให้เกษตรกรปรับปรุงร้อยละ
โดยเตรียมดิน อย่างน้อย 2 ครั้ง (โอเอ โอบน์/
ทำเต็มก่อนใช้เป็นปุ๋ย) ร้อยละ 86.7 มีการปรับปรุงพืช
ข้าว ปุ๋ยต่อ และไข่บน กลุ่มของการปลูกข้าวจะฆ่า
เพิ่มอีกครั้งในวันเดียวกัน ร้อยละ 35.9 รวมถึงมีการ
ปรับปรุงพืชผักให้เป็นที่เหมาะสมเพื่อให้การเจริญเติบโต
สะดวกเจริญเติบโตในที่ดินที่ดี ร้อยละ 87.5
สำหรับที่ดินของ Kongkal (2014) ที่พบว่า เกษตรกร
ยอมรับและนำไปปฏิบัติเป็นที่ดินในประเด็นปลูกพืช
ปุ๋ยและกลุ่มเกษตรกรบางราย ซึ่งจะเพิ่มปริมาณ
ดินหรือวัสดุ และสอดคล้องกับ Rantragoon (2012)
ที่พบว่า การปรับปรุงนักผลิตสั่งการผลิตข้าว
อาจมีการปรับปรุงในระดับบางส่วนสามารถระดับในปุ๋ยพืช
ปุ๋ยที่มี ประมาณ 500 กิโลกรัมต่อไร่ ระหว่างเก็บข้าว
เพื่อช่วยปรับปรุงปุ๋ยข้าว อาจเป็นเพราะเกษตรกรเห็น

3) การปรับปรุงพืชตามคำแนะนำ เกษตรกรให้
ปุ๋ยลงในข้าวอย่างน้อย 2 ครั้ง ร้อยละ 92.2
ในอัตราดีเพื่อหาข้อเท็จจริงในการให้ปุ๋ยใน
ข้าว ร้อยละ 89.4 และได้ปุ๋ยผักประมาณข้าวถูก
ออกไปในอัตราร้อยละ 10–20 ปี ใช้เพียงระยะเวลา
ยังไม่ได้ข้อเท็จจริงทำให้เกษตรกรไม่ได้รับ
ความช่วยเหลือจากสำเร็จ เที่ยวมันและด้วย
ความช่วยเหลือจากปุ๋ยเพื่อให้ปุ๋ยจะเพิ่มผลผลิตข้าวที่ได้
จะเพิ่มขึ้นตาม

4) การใช้สารเคมีก้าวตะวันฟ้า โคล แปลง
เกษตรกรใช้สารเคมีก้าวตะวันฟ้า โคล แปลง
เกษตรกรจากการเกษตรของไก่ ร้อยละ 96.9 มีการใช้สารเคมีก้าว
และใช้สารเคมีก้าว
ในการป้องกันก้าวซ้ำก้าวเพื่อป้องกันไก่ ร้อยละ 15.6
และเกษตรกรทราบว่า สารเคมีก้าวและ
ไก่เพื่อป้องกันก้าวซ้ำก้าว ที่ให้การใช้สารเคมีก้าวฟ้า
(เรื่องป้องกันเร็ว เชี่ยวโคลโคโรน่า เชี่ยวฟ้า และ
สารเคมีก้าวฟ้า) ผลเคมีสารเคมีก้าวฟ้า ร้อยละ 85.2
และใช้สารเคมีก้าวฟ้าสามารถใช้สีพรีโรคสารเคมี
ป้องกันเชื้อรา ร้อยละ 85.9 ตั้งแสดงใน Table 3
Table 3 Percentage of farmers on use of rice production cost reduction technology (N=128)

<table>
<thead>
<tr>
<th>Rice production cost reduction technology</th>
<th>Use</th>
<th>Not use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rice seed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Using quality rice seeds from appropriate varieties</td>
<td>100.0</td>
<td>0</td>
</tr>
<tr>
<td>1.2 Using pure rice seed varieties which germination rate not less than 80%</td>
<td>96.9</td>
<td>3.1</td>
</tr>
<tr>
<td>1.3 Apply seeds for broadcasting at 15–20 kg/rai</td>
<td>47.7</td>
<td>52.3</td>
</tr>
<tr>
<td>1.4 Maintaining good rice seeds with humidity more than 14%</td>
<td>30.5</td>
<td>69.5</td>
</tr>
<tr>
<td>2. Cultivation land preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Burning straw immediately after harvesting to reduce cost on land preparation</td>
<td>29.7</td>
<td>70.3</td>
</tr>
<tr>
<td>2.2 Preparing the soil at by plowing at least 2 times</td>
<td>86.7</td>
<td>13.3</td>
</tr>
<tr>
<td>2.3 Using green manure such as sun hemp (crotalaria) before rice broadcasting to increase soil organic matter</td>
<td>35.9</td>
<td>64.1</td>
</tr>
<tr>
<td>2.4 Adjusting soil surface for rice to grow steadily to reduce weed problem</td>
<td>87.5</td>
<td>12.5</td>
</tr>
<tr>
<td>3. Chemical fertilizer usage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Dressing chemical fertilizer at least 2 times</td>
<td>92.2</td>
<td>7.8</td>
</tr>
<tr>
<td>3.2 Analyzing soil to find out plant nutrients contents before applying fertilizers</td>
<td>78.1</td>
<td>21.9</td>
</tr>
<tr>
<td>3.3 Dressing urea fertilizers at 5–10 kg/rai in rice tilling stage</td>
<td>82.0</td>
<td>18.0</td>
</tr>
<tr>
<td>4. Reducing the pesticide usage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Considering disease symptom before chemicals applying</td>
<td>96.9</td>
<td>3.1</td>
</tr>
<tr>
<td>4.2 Using the Abamectin and cypermethrin to prevent rice brown hopper</td>
<td>15.6</td>
<td>84.4</td>
</tr>
<tr>
<td>4.3 Using bio-control (such as Trichoderma harzianum, BT and neem extract) to replace chemicals</td>
<td>85.2</td>
<td>14.8</td>
</tr>
<tr>
<td>4.4 Using Trichoderma harzianum to replace fungicides</td>
<td>85.9</td>
<td>14.1</td>
</tr>
</tbody>
</table>

การปรับเทียบความรู้ ความคิดเห็น และการใช้เทคโนโลยีการผลิตข้าวของเกษตรกร

เกษตรกรมีความรู้ ความคิดเห็น และการใช้เทคโนโลยีการผลิตข้าวในรูปแบบเกิดขึ้น 4 ด้าน ดังนี้ (1) เกษตรกรมีความรู้สืบเปลี่ยนช่วงที่สุด ร้อยละ 72.7 เนื่องจากเป็นเรื่องที่เกี่ยวข้องกับความรู้ด้านอื่น แต่เกษตรกรที่สุดยังมีการเข้ากับด้านเมล็ดพันธุ์ข้าวมากที่สุด ร้อยละ 80.7 เนื่องเป็นเรื่องที่เกี่ยวกับความคิดเห็นด้านอื่น แม้ว่าเกษตรกรมีความรู้สืบเปลี่ยนช่วงที่สุด แต่เกษตรกรมีความรู้และเห็นด้วยกับการเตรียมพันธุ์ข้าว ร้อยละ 82.8 และ 70.3 ตามลำดับ แต่เกษตรกรไม่สนใจคัดเลือก ร้อยละ 56.1 ที่นี้การทำ
ใช้เทคโนโลยีการเตรียมดิน (3) เกษตรกรมีความรู้เรื่องการใช้ปุ๋ยเคมีตามคำแนะนำ ร้อยละ 80.5 และมีการใช้ปุ๋ยเคมีตามคำแนะนำเพียงร้อยละ 67.2 และ 67.2 ตามลำดับ (4) เกษตรกรหันตัวกับการลดการใช้สารเคมีนั้นอยู่ที่สุด ร้อยละ 60.2 เมื่อเปรียบเทียบกับความคิดเห็นด้านอื่น แต่เกษตรกรเกือบทั่วหน้ามีความรู้เรื่องการลดการใช้สารเคมีก้าจัดรัฐพืช โรค แมลง ร้อยละ 97.6 ทำให้เกษตรกรส่วนใหญ่ ร้อยละ 84.4 ใช้เทคโนโลยีการลดการใช้สารเคมีก้าจัดรัฐพืช โรคและแมลง (Figure 1)

![Diagram](image)

Figure 1 Comparison of knowledge, opinion, and use of rice production cost reduction technology of farmers

สรุป

เกษตรกรผู้ปลูกข้าว ต้านเต็มบาง ยิ่งถ้าเจ้าการส่งเสริมพืชศึกษาการลดต้นทุนการผลิตข้าว จำนวน 128 คน มีความรู้เกี่ยวกับการใช้เทคโนโลยีการลดต้นทุนการผลิตข้าวนั้นด้วยการการเตรียมดิน ร้อยละ 80.5 และมีการใช้ปุ๋ยเคมีตามคำแนะนำเพียงร้อยละ 67.2 และ 67.2 ตามลำดับ (4) เกษตรกรหันตัวกับการลดการใช้สารเคมีนั้นอยู่ที่สุด ร้อยละ 60.2 เมื่อเปรียบเทียบกับความคิดเห็นด้านอื่น แต่เกษตรกรเกือบทั่วหน้ามีความรู้เรื่องการลดการใช้สารเคมีก้าจัดรัฐพืช โรค แมลง ร้อยละ 97.6 ทำให้เกษตรกรส่วนใหญ่ ร้อยละ 84.4 ใช้เทคโนโลยีการลดการใช้สารเคมีก้าจัดรัฐพืช โรคและแมลง (Figure 1)
กิตติกรรมประกาศ

เดิมบาง อำนาจเดิมบางนาบางระวอดั้นหวั้นสุพรรณบุรี
นักวิชาการเกษตรและผู้ช่วยนักวิจัย สถาบัน
วิทยาศาสตร์ข้าวแห่งชาติ จังหวัดสุพรรณบุรี สำเร็จ
วิทยาการลดต้นทุนการผลิตข้าว ด้ายน้ำ

เอกสารอ้างอิง

krungsri.com/bank/getmedia/578889e0-fc28-4e20-bc48-31f0dbe04a3d/IO_Rice_2018_
TH.aspx, March 14, 2019.

Jarumus, W. 2014. Factors Affecting Returns of Farmers in Rice Grain Pawn Project, Samut Prakan
Province. MS Thesis, King Mongkut’s Institute of Technology Ladkabang, Bangkok.
(in Thai)

Kaewket, C. 2010. Factors Relating to Adoption of Rice Production Technology of Farmers in
Samranrat Sub-district, Doin Saket District, Chiang Mai Province. MS Thesis, Maejo
University, Chiang Mai. (in Thai)

Kongka, B. 2014. Adoption of Technology for Reducing Rice Production Cost by Farmers in Nong
Ya Sai District, Suphan Buri Province. MS Thesis, Sukhothai Thammathiraj Open University,
Nonthaburi. (in Thai)

on Food Production Security in the Agricultural Sector of Thailand. By the Center for
Applied Economics Research, the Faculty of Economics Kasetsart University 2011.
Available Source: file: \C: \Users\Windows10\Downloads\Vol.2-4.pdf, March 1, 2019.
(in Thai)

Muangmool, S. 2007. Adoption of Hybrid Rice Cultivation Technology of Rice Farmer Group
Members. Muang District, Kamphaengphet Province. MS Thesis, Sukhothai Thammathiraj
Open University, Nonthaburi. (in Thai)

Office of Agricultural Economics. 2018. Agricultural Economics Situation Report for the 1st Quarter

Termsrirat, S. 2009. Adoption of Rice Seed Production Technology of Farmers in Roi-et Province. MS Thesis, Sukhothai Thammathiraj Open University, Nonthaburi. (in Thai)